
Profile-based routing and traffic engineering

Subhash Suria, Marcel Waldvogelb,*, Daniel Bauerb, Priyank Ramesh Warkhedec

aDepartment of Computer Science, UC Santa Barbara, 2111 Engineering I, Santa Barbara, CA 93106, USA
bIBM Zurich Research Laboratory, 8803 Rüschlikon, Switzerland

cCisco Systems, San Jose, CA 95134, USA

Received 12 May 2002; accepted 14 May 2002

Abstract

We present a new algorithm and framework for dynamic routing of bandwidth-guaranteed flows. The problem is motivated by the need to

set up bandwidth-guaranteed paths in carrier and ISP networks dynamically. Traditional routing algorithms such as minimum-hop or widest-

path routing do not take advantage of any knowledge about the traffic distribution or ingress–egress pairs, and therefore can often lead to

severe network underutilization. Our work is inspired by the recently proposed Minimum Interference Routing Algorithm (MIRA) of

Kodialam and Lakshman, but it improves on their approach in several ways. Our main idea is to use a ‘traffic profile’ of the network, obtained

by measurements or service-level agreements as a rough predictor of the future traffic distribution. We use this profile to solve a multi-

commodity network flow problem, whose output is used both to guide our online path-selection algorithm as well as to impose admission

control. The offline multi-commodity solution seems very effective at distributing the routes and avoiding bottlenecks around hot spots. In

particular, our algorithm can anticipate a flow’s blocking effect on groups of ingress–egress pairs, whereas, MIRA only considers one

ingress–egress pair at a time. Our simulation results show that the new algorithm outperforms shortest-path, widest-path, and minimum

interference routing algorithms on several metrics, including the fraction of requests routed and the fraction of requested bandwidth routed.

Finally, the framework is quite general and can be extended in numerous ways to accommodate a variety of traffic management priorities in

the network.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Routing; Flow routing; Profile; Label switching; Multi-protocol label-switched; Traffic engineering

1. Introduction

We present a new algorithm and framework for dynamic

routing of bandwidth-guaranteed flows. Our algorithm is

online, meaning that it routes requests one at a time, without

specific knowledge of future demands. We use quasi-static

information about the network and traffic to select paths so

as to minimize the number of requests that are rejected or

the network bandwidth that is wasted. Clearly, if no

assumptions are made about the flow requests, a pathologi-

cally chosen set of requests can foil any online algorithm.

We make minimal assumptions that are justifiable in

practice and lead to a significant improvement in network

utilization. In particular, we assume that the ingress and

egress nodes in the network are known, and that a traffic

profile between pairs of ingress–egress nodes is also known.

This traffic profile can be measured, inferred from service-

level agreements (SLAs), created by rule-of-thumb or any

other mechanism suitable to the network operator. Our

algorithm uses this quasi-static information in a preproces-

sing step (one multi-commodity flow computation), to

determine certain bandwidth allocations on the links of the

network. The online phase of the routing algorithm then

routes tunnel requests using a ‘shortest-path’ (SPF) like

algorithm but with the additional information given by the

preprocessing phase. The multi-commodity preprocessing

phase allows the online algorithm to exercise admission

control by rejecting some requests because of their blocking

effects in the network.

The motivation for our problem arises from the needs of

service providers who must dynamically reserve bandwidth-

guaranteed routes in carrier and Internet Service Provider

(ISP) networks. Following Kodialam and Lakshman [2], we

will describe our algorithms in the context of setting up

paths in Multi-Protocol Label-Switched (MPLS) networks,

although our algorithms are applicable in other contexts as

0140-3664/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 14 0 -3 66 4 (0 2) 00 1 54 -8

Computer Communications 26 (2003) 351–365

www.elsevier.com/locate/comcom

* Corresponding author. Fax: þ1-805-893-8553.

E-mail addresses: suri@cs.ucsb.edu (S. Suri), mwl@zurich.ibm.com

(M. Waldvogel), dnb@zurich.ibm.com (D. Bauer), priyank@cisco.com

(P.R. Warkhede).

http://www.elsevier.com/locate/comcom

well, most notably virtual-circuit systems. MPLS networks

[3] allow explicit routing of packets by putting labels on

them, which can then be used to forward packets along

specific Label-Switched Paths (LSPs). Service providers

can perform this encapsulation at the ingress routers, and

then use LSPs to implement Virtual Private Networks

(VPNs) [4] or satisfy other Quality-of-Service (QoS)

agreements with clients. At the ingress routers, packet

classification [5–7] can be used to map packets into

‘forwarding equivalence classes’ by examining packet

headers. This aggregation (mapping into equivalence

classes) also has the potential advantage of smoothing out

the bandwidth requirement across many bursty streams. In

addition, the service providers can use a measurement-based

mechanism to build a traffic profile for an ingress–egress

node pair. Such a profile can be as simple as an average

bandwidth requirement over a certain time period.

An LSP requires set up, meaning that all the intermediate

routers between the ingress and egress nodes are specified.

The path is set up using a signaling protocol such as RSVP

[8] or Label Distribution Protocol (LDP [9]). The ability to

specify explicit paths for any flow gives the service

providers an important tool to engineer how their traffic is

routed, and thereby improve network utilization by mini-

mizing the number of requests that are rejected when the

network becomes overloaded. Current intra-domain routing

schemes, which forward packets based on destination

address only, do not take into account what other flows

are currently, or likely to be, requested. Thus, their routing

behavior is highly myopic—they will reject or drop packets

and flows when the default shortest-path route becomes

congested, even if an alternative path is available.

Algorithms such as widest-path routing also suffer from

similar problems. We therefore need better schemes for

routing flow requests that take better advantage of the

network infrastructure, network topology, and traffic

distribution. We show that this problem is NP-Complete

even in highly simplified form, but propose a novel multi-

commodity-based framework that eliminates many of the

shortcomings of shortest-path routing, widest-path routing,

and even minimum interference routing.

Although we present our algorithm in the context of

bandwidth guarantees, it can also perform routing based on

other QoS metrics such as delay, loss, etc. As pointed out by

Kodialam and Lakshman [2], if additional constraints such

as delay or loss are to be incorporated into SLAs, one can do

so effectively by converting those requirements into a

bandwidth requirement [10].

Our framework is quite general and can be extended and

generalized in multiple ways to handle additional metrics

and requirements. In particular, the multi-commodity flow

formulation permits a cost function, which we minimize to

achieve optimal routing. To minimize the number of

rejected requests, we use the simple linear cost function.

A variety of non-linear cost functions can be used to handle

features such as minimum guaranteed bandwidth or fairness

across multiple flows.

2. Routing requirements

In this section, we briefly discuss the requirements that a

flow routing algorithm must satisfy. Kodialam and Laksh-

man [2] give a detailed list of ten important criteria that a

dynamic path-selection algorithm must meet. We discuss

only the most important requirements here.

Routing without splitting flows. It is assumed that the

flow should be routed on a single path, without splitting.

Many flow requests may involve traffic that is inherently

unsplittable (circuit emulation or voice), and therefore it is

important to route them on single paths. Thus, for each flow

request, the algorithm must find a path with the desired

amount of bandwidth between the ingress and egress nodes,

or determine that the flow is unroutable.

Online routing. We assume that the individual flow set-

up requests arrive online, one at a time, and the algorithm

must process each request without having to know future

requests. In the network provisioning and design phase, it is

customary to assume that exact point-to-point demands are

known. But that assumption is highly impractical for the

MPLS tunnel setup problem. While we make use of quasi-

static information such as traffic profiles in our algorithm,

those profiles are used only as a rough guide for the

aggregate demands to be expected. Furthermore, our routing

algorithm is completely online—it does not need to know

anything about individual requests, their bandwidth require-

ments, or their time of arrival. Of course, if the actual

demands in aggregate deviate significantly from the

assumed profile, the performance improvement achieved

by our algorithm may degrade, but that is to be expected for

any online algorithm.

Computational requirement. We want the path-selection

algorithm to be quite fast and scalable. Individual flow setup

requests are typically processed at the ingress routers or

switches, which operate at very high load and have limited

computing power. Thus, the computational requirement per

flow setup request must be kept as low as possible. In this

regard, our algorithm is just as efficient and simple as the

shortest-path algorithm, and substantially faster than the

Kodialam–Lakshman algorithm. The expensive part of our

algorithm is the preprocessing phase, which however is run

very infrequently and offline, only when the quasi-static

information changes. The online algorithm runs a single

breadth-first search algorithm, which is several orders of

magnitude faster than the max-flow computations needed by

the Minimum Interference Routing Algorithm (MIRA) [2].

Policy constraints. A good path selection algorithm

should be able to incorporate additional policy constraints.

For example, a service-level agreement may require

avoiding links with certain loss rate. Similarly, SLAs may

require a minimum flow acceptance guarantee; for example,

S. Suri et al. / Computer Communications 26 (2003) 351–365352

over a period of one hour, flows with a total bandwidth of at

least 100 Mbps must be accepted. In Section 9, we describe

mechanisms to implement such policy constraints into our

framework.

Traffic profile. Our algorithm uses information about

‘expected’ flows between some ingress–egress node pairs.

We explain the exact from of this information later, but

briefly speaking our belief is that yesterday’s traffic between

an ingress–egress pair can serve as a good predictor for

today’s traffic. This should be especially true in light of the

fact that service providers aggregate a large number of

flows, using forwarding equivalence classes, for the

ingress–egress pairs. Service providers can have multiple

classes per ingress–egress pair, and keep separate profiles

for various classes. These profiles can either be measure-

ment based or inferred from SLAs.

Routing information. Finally, like shortest-path routing,

our algorithm also uses only the link-state information and,

like the widest-path routing algorithm, it uses some

auxiliary capacity information. In order to keep the

presentation simple, we describe our algorithm for the

centralized route server model, although it can also be

implemented in a distributed fashion.

3. Review of existing algorithms

The most commonly used algorithm for routing LSPs is

the shortest-path routing, in which the least number of links

between ingress and egress nodes is chosen. Each of these

links has been assigned a cost or weight, to determine the

link’s preference. The routing algorithm keeps track of the

current residual capacity for each link, and only those links

that have sufficient residual capacity for the new flow are

considered. The shortest-path algorithm is very simple, but

it can also create bottlenecks for future flows, and lead to

severe network underutilization (see examples in Section 5).

Our new algorithm is just as efficient and fast as the shortest

path algorithm (during the path-selection phase), but by

using additional information about the network and traffic in

a preprocessing phase the number of requests that might be

rejected because of inappropriate route selection can be

significantly reduced. To reduce the creation of bottlenecks,

network operators often manually tweak the weights

associated with individual links heavily until the worst

bottlenecks have been resolved. Instead of full-fledged

shortest path algorithm that has to deal with weights, our

algorithm could even use the simpler minimum-hop

algorithm (which is just a breadth-first search) to select a

path in the online phase, thanks to the powerful

preprocessing.

Guérin et al. [11] propose a variant of the shortest-path

algorithm, called Widest–Shortest Path (WSP), in which

they choose a feasible shortest path that has the largest

residual capacity—in other words, the smallest link residual

capacity along the path is maximized. While WSP certainly

improves on shortest-path routing, it remains prone to

myopic behavior: it does not take into account the influences

that selecting a path between a given ingress–egress pair

has on a potentially large number of other pairs. WSP has no

notion of active ingress–egress pairs or traffic character-

istics; all it cares for is the amount of bandwidth currently

available on the individual links and the requirements of the

flow that is currently being routed. As it does neither know

nor care which other ingress–egress pairs will be impacted

and how much, WSP still can create bottlenecks as outlined

below. More significantly, neither the shortest-path nor

WSP routing algorithm impose any form of admission

control. Thus, these algorithms will always accept a flow if

there is a feasible path in the network, even if accepting that

flow has the potential to block off a large number of future

flows. Even when the path choice would perfectly minimize

the impact on other potential flows, to give other flows a

chance at all, it may sometimes be better to reject one flow

in order to admit a large number of other flows. The

example in Fig. 1 dramatically illustrates the effect of

admission control—without admission control, one can

force any online algorithm to achieve close to zero network

utilization!

The work most closely related to ours, and indeed the

basis for our work, is the MIRA of Kodialam and Lakshman

[2]. MIRA is a rather more sophisticated algorithm than

either shortest path or WSP, and it takes critical advantage

of ingress–egress pairs. The basic observation in Ref. [2] is

that routing a flow along a path can reduce the maximum

permissible flow between some other ingress–egress pairs.

Kodialam and Lakshman call this phenomenon ‘interfer-

ence’. Their thesis is that if paths that reduce a large amount

of possible maximum flow between other ingress–egress

pairs are avoided, creation of bottlenecks can also be

avoided. Their algorithm performs multiple max-flow

computations to determine the path of least interference.

Fig. 1. The parking-lot topology PL.

S. Suri et al. / Computer Communications 26 (2003) 351–365 353

Another approach to minimum interference routing is

presented in Ref. [12]. It defines interference based on the

notion of ‘critical paths’, which are computed using WSP. It

achieves the same performance as MIRA at a considerably

reduced computational complexity.

The idea of minimizing interference is a good one, but

we believe it has several limitations. First and foremost is

the observation that MIRA focuses exclusively on the

interference effect on single ingress–egress pairs. It is

incapable of estimating the bottleneck created on links that

are critical for clusters of nodes (see examples in Section 5).

Second, MIRA considers only the fact that using a given

link would reduce the maximum bandwidth between a pair,

without regard to the expected bandwidth between that pair.

Thus, MIRA might choose a wastefully long path, although

the more direct path retains sufficient residual bandwidth to

accommodate the demands of other flows. Third, MIRA has

no notion of admission control, which is necessary to

provide fairness and adhere to SLAs. Finally, MIRA is

computationally very expensive. While shortest-path, WSP,

and our new algorithm all perform a single shortest-path

computation to route a request, MIRA performs a maximum

flow computation per ingress–egress pair, each of which

can be several orders of magnitude more expensive than the

shortest-path calculation.

Matta et al. [13] also use a profile for making routing

decisions. For each source-destination pair, their profile

contains a Probability Density Function (PDF) describing

the likelihood of individual request sizes. This PDF is then

used to reduce the link wastage among a set of alternate

routes. Load profiling is most effective when the request

sizes are large compared to the link bandwidth, and is

orthogonal to profile-based routing.

4. Problem statement

We model the network as a graph G ¼ ðV;EÞ; where V is

the set of routers and E is the set of links. The current

residual capacity of a link e [E is denoted cap(e)—this is

the additional bandwidth that can be routed on link e. A

subset of routers are assumed to be ingress–egress routers,

between which LSPs can be set up. We assume that the

ingress–egress pairs are known, and that this information is

quasi-static, i.e. that it changes very infrequently. An

example is shown in Fig. 2, which is borrowed from Kar–

Kodialam–Lakshman [14].1 We call this network the KL1

graph, and it is one of the several networks we used for our

simulations.

A request for an LSP setup is defined by a quadruple (id;
si; di; bi), where id is the request ID, si is the ingress (source)

router, di is the egress (destination) router, and bi is the

bandwidth requested for the LSP. (The reason for having a

separate id for each request is that there can be multiple

request for the same (si; di) pair). As mentioned earlier, all

QoS requirements for the flow are assumed to have been

folded into the bandwidth bi: Given a request (id; si; di; bi),

the algorithm can either accept it, in which case it must find

a path in the network from si to di along which each link has

a residual capacity of at least bi or reject it. The admission

control feature allows our algorithm to reject a request even

if there is a feasible path—this may happen if the algorithm

determines that accepting this request creates a significant

bottleneck for future requests (based on its knowledge of the

ingress–egress pairs and their traffic profile). We assume

that all LSP setup requests arrive online, one at a time, and

the algorithm does not know anything about individual

future requests, their bandwidth requirements, or their time

of arrival.

The traffic profile information used by our algorithm

records the expected flow between pairs of ingress–egress

routers, and represents an aggregated demand profile

between ingress–egress pairs. Such information can be

either measurement-based or calculated from SLAs that

have been entered by a service provider with its clients.

Each traffic profile is also defined by a quadruple: (classID;
si; di; Bi), where classID is the traffic class, si di are the

ingress and egress nodes, and Bi is the aggregate traffic to be

expected for this class between si and di: Between the same

si; di pair, there can be multiple traffic classes (correspond-

ing to different service types offered by the provider). Each

LSP request can be mapped to a unique traffic profile class.

(Conversely, a traffic profile class acts as an aggregate proxy

for all the LSP requests mapped to it.)

The traffic profile is rough indication of the amount of

traffic that can be expected between a pair; however the LSP

setup request sequence arrives online. A convenient way to

think about this is that total sum of all LSP requests between

si and di for the class i is a random variable with mean Bi:
But the time of arrival of individual requests and their

bandwidth requirements are entirely unpredictable. Thus, as

far as our routing algorithm is concerned, the request

sequence is completely online.

Fig. 2. An example network, showing ingress–egress nodes.

1 This figure actually reflects the graph used for the MIRA measurements

in Ref. [14], although, according to one of the authors, the figure that was

printed in their paper does not correctly reflect all high-bandwidth links.

S. Suri et al. / Computer Communications 26 (2003) 351–365354

For simplicity, we assume there is a route server that

knows the current network topology and available link

capacities. Instead of dedicating a single machine to

perform route computations, this job could also be shared

among all ingress nodes without changes to the framework.

5. Examples illustrating limitations of existing routing

algorithms

In this section, we informally describe the shortcomings

of existing routing algorithms using some simple illustrative

examples. Our basic theme is that algorithms that do not

adapt to the traffic distribution in the network (taking

advantage of ingress–egress pairs and some rough estimate

of the traffic flow between pairs) will always lead to

suboptimal network utilization, which can be quite severe in

some cases. In particular, the routing by algorithms such as

shortest-path and WSP that do not impose any form of

admission control can occasionally lead to significant

bottlenecks. Simply having more information about the

network or traffic does not guarantee better routing. Our

proposed framework assumes only a minimum of infor-

mation about the network and traffic, which we believe can

be easily obtained. Our algorithm, although as simple and

computationally efficient as the shortest-path algorithm,

leads to fewer rejected requests and better network

utilization.

We use three simple examples to illustrate the short-

comings of existing routing algorithms. In order to drive

home the point, these examples appear by necessity

artificial, but their general form is not at all unusual. In

fact, real networks are quite likely to contain subgraphs that

resemble the concentrator or the distributor example. The

parking-lot topology is common as well, but also depends

on the selection of ingress–egress pairs. As pair selection is

often outside the influence of the ISP, the occurrence of this

pathological case is likely to appear in the real world.

Parking Lot. Fig. 1 shows a simple network with 3n þ 3

nodes. The ingress–egress pairs for the LSP set up requests

are ðS0;D0Þ; ðS1;D1Þ;…; ðSn;DnÞ; and the bandwidth

requested for each LSP is 1. All link capacities in the

network are either 1 or 1 þ 1, as shown.

Suppose the online sequence of LSP requests arrive in

the order ðS0;D0Þ; ðS1;D1Þ;…; ðSn;DnÞ: Accepting the

request ðS0;D0Þ completely chokes off the network—no

other LSP request can be satisfied. However, as neither the

shortest path nor WSP will reject flow requests if there is a

feasible path (independent of the resulting impact) they will

accept ðS0;D0Þ; resulting in a total network utilization of 1.

An optimal algorithm will reject ðS0;D0Þ; and accept

ðS1;D1Þ;…; ðSn;DnÞ; for a total network utilization of n.

The choice of capacity 1 þ 1 for the links along the spine

of the parking-lot also foils MIRA—as these links are not in

the min cut for any ðSi;DiÞ pair, and are not considered

critical. Even if MIRA were modified to support admission

control, it would still accept the first flow request and end up

rejecting all other requests.

Although the links are drawn as directed, path selection

and blocking behavior would remain the same for bi-

directional links. In the following two examples, some of

the links need to be unidirectional. Even though uni-

directional links are rare (i.e. satellite downlinks and

downstream-only cable modem installations), uni-

directional remaining capacity is quite common. Because

of asymmetric links or loads, the remaining capacity in the

opposite direction could become too small to be useful.

Concentrator. Fig. 3(a) shows a network, which we call a

concentrator graph—one node C acts a feeder for n ingress

nodes S1;…; Sn: The concentrator node C is connected to a

high-capacity link, fat pipe, of capacity n þ 1,whose other

endpoint is egress node D. One high-bandwidth ingress S0 is

also connected to the concentrator, though a capacity-n link.

S0 is also connected to D via an alternative three-hop path of

capacity n.

In this example, an online sequence of n þ 1 requests

arrive: ðS0;DÞ; ðS1;DÞ;…; ðSn;DÞ: The first request has

bandwidth requirement n, all others have bandwidth

requirement 1. Using either the shortest path or the WSP,

one would route the first request through the concentrator

node (using two hops). This leaves residual capacity 1 along

the link CD, and thus at most one of the remaining n

requests can be satisfied.

This example also illustrates the shortcoming of

MIRA—the fat link CD is not in the minimum cut for any

individual ingress–egress pair. Thus saturating it does not

seem harmful to MIRA, and accordingly MIRA will also

choose incorrect paths in this scenario. The optimal

algorithm will route the ðS0;DÞ request along the top

Fig. 3. Example topologies. (a) The concentrator topology CN. (b) The distributor topology DS.

S. Suri et al. / Computer Communications 26 (2003) 351–365 355

alternative path, and use the fat link to route the n 1-unit

requests from Si to D.

Distributor. While the preceding example shows why it

sometimes may be a good idea not to use the fat pipe, our

next example shows that the converse is also true.

In the example shown in Fig. 3(b), we get n requests

between S0 and D, each of bandwidth 1. In addition, we also

get n requests between each Si and D, also of bandwidth 1.

Again, the shortest-path algorithms (shortest path and WSP)

will use the two-hop paths for each of the first n requests,

choking off the 1 þ 1 links. Thus, each of the remaining n

requests between Si and D is rejected. The routes selected by

MIRA are also the same, as the links of capacity 1 þ 1 are

not in the minimum cut for any Si, D pair. By contrast, the

optimal algorithm will route all the requests from S0 along

the bottom fat path (three hops), leaving the top two-hop

paths for Si to D requests.

The preceding examples are intended to illustrate how a

bad path selection for one flow can create significant

bottlenecks for future flows. An online routing algorithm

that has no additional information about the flows can

perform quite poorly in the worst case. As the parking-lot

example shows, in some cases these algorithms cannot

guarantee that even 1% of the network bandwidth is utilized,

whereas the optimal algorithm achieves 100%. We build on

the work by Kodialam and Lakshman [2], and propose a

new algorithm as well as a general framework, in which we

exploit information about the ingress–egress nodes as well

as measured (or estimated) traffic profile to perform both

path selection and admission control. Our algorithm is both

simpler than MIRA, and it also performs better in many

cases where MIRA falls into the same traps as the shortest

path or widest shortest-path routing algorithms.2

6. Multi-commodity flows

We begin with the observation that even if the exact

sequence of tunnel requests were known in advance, the

problem is intractable. In particular, given an offline

sequence of LSP setup requests, it is NP-Complete to

determine the maximum number of requests that can be

simultaneously routed. Thus, the difficulty lies not necess-

arily in the online nature of the problem, but rather in having

to choose which of many paths to select for routing a flow.

We turn this difficulty around by formulating the offline

problem as a multi-commodity flow problem, on a modified

network. We use the traffic profile data for the ingress–

egress pairs as the offline aggregate data. The solution to the

multi-commodity flow problem is then used to preallocate

link capacities to various flows, which are then used by the

online algorithm to perform path selection. When the

allocated capacity for a flow becomes zero (or was initially

assigned zero), that flow request is rejected—even though

there might be sufficient capacity in the network to route it.

Let us begin with some preliminaries about multi-commod-

ity flows. Interested readers can find a comprehensive

treatment of network flows in Ref. [15].

Given a directed Graph G ¼ ðV ;EÞ; with positive

capacity cap (u; v) for each edge (u; v), a flow on G is a

real-valued function f on node pairs having the following

properties:

Skew Symmetry. f ðv;wÞ ¼ 2f ðw; vÞ: If f ðv;wÞ . 0; then

there is a flow from v to w.

Capacity Constraint. f ðv;wÞ # capðv;wÞ: If ðv;wÞ is not

an edge of G, then we assume that capðv;wÞ ¼ 0:
Flow Conservation. For every vertex v, other than the

source or the sink (i.e. ingress or egress), the flow is

conserved:
P

w f ðv;wÞ ¼ 0:
It is straightforward to prove that the problem of

determining whether a given (offline) set of LSP requests

can be routed is NP-Complete.

Theorem 1. Given a network G ¼ ðV ;EÞ; where each link

has a positive capacity, and a set of k LSP requests

ðid; si; di; biÞ; for i ¼ 1; 2;…; k; deciding whether it is

possible to simultaneously route all k requests in G is

NP-Complete.

Indeed, the LSP routing problem is a generalization of

the simple two-commodity integral flow problem, which is

known to be NP-Complete [16]. The two-commodity

integral flow problem asks whether it is possible to find

two flow functions that deliver some required set of flows

from two source nodes to two sink nodes. Specifically,

suppose we are given a directed graph G ¼ ðV;EÞ; node

pairs ðs1; d1Þ; ðs2; d2Þ; positive integral capacity capðeÞ for

each edge e [E; and bandwidth requirements b1 and b2:
Then, it is NP-Complete to decide whether there are flow

functions f1; f2 such that (1) for each link e [E; f1ðeÞ þ

f2ðeÞ # capðeÞ; (2) for each node other than s1; s2; d1; d2;
flows f1 and f2 are conserved, and (3) the net flow to di under

fi is at least bi:
We are now ready to describe the details of our

algorithm.

7. Profile-based routing

Examining the problem more closely, we find that the

intractability of the LSP setup problem stems from two

requirements: unsplittability of the flows, and separate

demand functions for each flow. In other words, if flows are

allowed to be split, and if the objective is to maximize total

flow rather than to satisfy each individual flow, then the

problem can be solved efficiently through linear

2 Although MIRA later received a sibling, L-MIRA [14], which adds a

fuzz factor when determining the bottleneck links, this is easily defeated

either artificially by appropriately choosing 1 or naturally through the

inherent dynamic nature of the allocation process. In the latter case, adding

flows to the ‘better’ link will soon shrink its available bandwidth, getting it

beyond the fuzz threshold.

S. Suri et al. / Computer Communications 26 (2003) 351–365356

programming. Unfortunately, in the LSP problem, we do not

want flows to be split, and we do want to enforce some kind

of fairness to admit as many flows as possible. Fortunately,

we are able to finesse the problem on both counts by using a

multi-commodity flow framework on the traffic profiles,

rather than individual flows. First, the individual flow

request sizes are typically much smaller than the link

capacities—for instance; the link capacities might range

from OC-12 to OC-192, while a typical request might be

just a few megabits per second. Second, we use the multi-

commodity flow in the preprocessing phase, where

‘commodities’ correspond to highly aggregated traffic

profiles, rather than to individual LSP requests. So, when

a commodity is split, it does not mean that a flow is split; it

merely means that a ‘group’ of flows is routed on a different

path than another group. An individual LSP request is never

split—our algorithm either finds a single path to route it, or

rejects it.

Our algorithm has two phases: a preprocessing phase, in

which we solve a multi-commodity flow problem to pre-

allocate link capacities for various traffic classes, and an

online routing phase, in which LSP request is routed online

using a shortest-path-like algorithm. Let us first describe the

preprocessing phase.

7.1. Multi-commodity flow preprocessing

The input to the preprocessing phase is the network

G ¼ ðV ;EÞ; with capacity cap(e) for each edge e [E.

We are given a set of traffic profiles (classID; si; di;BiÞ;
where classID is the traffic class, si; di are the ingress

and egress nodes, and Bi is the aggregate bandwidth

requirement for this class between si and di: We treat

each traffic class as a separate commodity. Suppose

there are k commodities, numbered 1 through k. The

goal is to find routes in the network to send as much of

each commodity as possible from its source node to the

destination node.

However, as noted earlier, satisfying all bandwidth

requirements may not be possible. We therefore put

additional edges in the network, called excess edges, so

that the problem always has a feasible solution, and use edge

costs to distinguish between the network edges and the

excess edges. In particular, we add an infinite capacity

excess edge between each ingress–egress pair, shown as

dashed lines in Fig. 4. Thus, costðeÞ ¼ 1 if e [E, and

costðeÞ ¼ capðeÞ ¼ 1 if e is an excess edge, where 1 is an

appropriately large number. The large cost of the excess

edges forces as much of the feasible flow as possible to go

through original network edges. Let G0 denote the graph

obtained by adding these excess edges.

Now, let xiðeÞ denote a real-valued variable, denoting the

amount of commodity i that is routed through edge e. Then,

the multi-commodity problem to be solved for graph G0 is to

minimize
X

costðeÞ
Xk

i¼1

xiðeÞ

 !

subject to the following constraints:

† capacity constraints are satisfied for all edges—if e is not

an excess edge, then
Pk

i¼1 xiðeÞ # capðeÞ;
† the flow for each commodity is conserved at all nodes,

except at the corresponding ingress and egress nodes, and

† the amount of commodity i reaching its destination, di; is

Bi:

The output of the multi-commodity flow computation is

the values for the variables xiðeÞ: We use these values to set

a pre-allocation of the capacity of the edges e for various

flows. In other words, the xiðeÞ part of e’s capacity will be

used by the online algorithm to route flows belonging to

traffic class (and thus ingress–egress pair) i. In summary,

the multi-commodity phase of the algorithm determines

admission control thresholds for each traffic class, and

computes pre-allocation of link capacities to maximize

network utilization. The online routing phase of the

algorithm is described next.

7.2. Online path selection for LSP requests

The input to this phase of the algorithm is the input graph

G ¼ ðV;EÞ; where for each edge e [E; we keep track of

the residual capacity rjðeÞ for each traffic class j ¼

1; 2;…; k: (Note that these residual capacities are per traffic

class, not per flow.) The initial value for rjðeÞ is set to xjðeÞ;
which is the output of the multi-commodity preprocessing

phase. The algorithm then processes an online sequence of

LSP setup requests (id; si; di; biÞ; where id is the request ID,

si is the ingress (source) router, di is the egress (destination)

router, and bi s the bandwidth requested for the LSP. We

assume that each LSP can be mapped (by the ingress router

si) to a unique traffic class. Our online routing algorithm

runs on the reduced graph, which uses the pre-allocated

capacities corresponding to this class. In this reduced graph,

we select a minimum-hop path between si and di; if one

exists.

To allow for significant deviations from the profile, the

network operators may choose to hide some percentage of

the link bandwidths from the multi-commodity flow

Fig. 4. The excess edges added to make the multi-commodity flow always

feasible.

S. Suri et al. / Computer Communications 26 (2003) 351–365 357

computation and make it available only at the time of flow

routing on a first-come first-serve basis. The classless

residue available this way on link e is referred to as R(e).3

Algorithm 1. Input. The input graph G ¼ ðV;EÞ: For each

edge e, we maintain residual capacity rjðeÞ for each

commodity (traffic class, i.e. ingress–egress pair) j ¼

1; 2;…; k: In addition, each edge maintains a classless

residue, R(e), which can be used by all commodities, once

their capacities are exhausted. For standard profile-based

routing, all R(e) can be considered zero. The LSP request is

between an ingress–egress pair s; d; and the bandwidth

requirement is b. Let j be the traffic class to which this LSP

belongs.

Output. A path from s to d, such that for each edge e along

this path there had been rjðeÞ $ b (during the algorithm

rjðeÞ—and possibly R(e)—are updated to contain the new

residual bandwidths).

Operation:

(1) Delete from G all edges e for which rjðeÞ þ RðeÞ , b:
(These edges have insufficient residual capacity for

class j.)

(2) In the reduced graph, find a path P with minimum

number of hops, using a breadth first search, from s to

d.

(3) For each edge e in path P, decrease the residual

capacity rj(e) by b. If the resulting rj(e) becomes

negative, bandwidth is taken from R(e) as required.

(4) Route LSP (s, d, b) along path P.

7.3. Complexity analysis

If the network has N nodes and M edges, the breadth first

search algorithm computes a shortest path in OðN þ MÞ

time. This is a linear-time algorithm, and should be several

orders of magnitude faster than the MIRA algorithm, which

needs to perform several (as many as the number of

ingress–egress pairs) maxflow computations. Each of these

maxflow computation itself takes OðN2
ffiffiffi
M

p
Þ time. Addition-

ally, MIRA needs to enumerate the links belonging to

minimum cuts, which is of complexity OðM2Þ: Thus, the

total complexity of MIRA is OðN2
ffiffiffi
M

p
þ M2Þ: During the

path-selection phase, our algorithm has the same run-time

complexity as the currently used shortest-path algorithm.

Our algorithm is faster than the WSP routing algorithm,

because that algorithm must execute a Dijkstra-style

shortest-path computation [17].

The preprocessing phase of our algorithm solves a

minimum cost multi-commodity flow problem, which can

be slow. But that step can be executed offline, and does not

require recomputation unless the network information

changes, such as ingress–egress pairs or their traffic profile.

Those changes are very infrequent. Thus, our algorithm

needs occasional heavy preprocessing to build a pre-

allocation table, which it then uses to run the online path-

selection phase.

7.4. Network dynamics

So far, we considered the network topology and profile to

be static. In this section, we will discuss the results of link

failures/additions or profile changes. As the problem

becomes trivial when rerouting of existing flows is possible,

we will only discuss the cases when rerouting is not an

option.

When a link is removed, the following steps can be taken

to get the network back into operation. It is assumed that the

flows that have been severed by the link failure should be

restored on the new topology.

(1) Remove the link from the graph.

(2) Remove all flows that crossed the link and remember

them.

(3) Create a graph of a residual network, in which the

capacity of each link is described by the total residual

capacity ðRðeÞ þ
P

rjðeÞÞ of that link in the real

network.

(4) Create a residual profile, which is the base profile

reduced by the capacities of the currently routed flows.

(5) Run the multi-commodity flow computation with the

residual network and profile (same complexity as

initial computation, Section 7.3).

(6) Try to reroute the flows that crossed the removed

link.

When a new link is added, the multi-commodity flow

computation is also run using residual networks and profiles

similarly created. A reduction or increase of the capacity of

a link is handled as a straightforward modification of the

link removal or addition process, respectively.

7.5. Dynamic profiles

When a profile is changed at run time and rerouting of

existing flows is not an option, the changes may be activated

as described in Section 7.4, using residual networks and

profiles.

When no a priori profile information is available, but it

can be assumed that current demand is an indication of

future demand, self-profiling can be used: after routing the

first few requests without a profile, using a standard routing

algorithm, a profile is extrapolated from the requests seen so

far. This profile is then used to route future requests, again

using residual networks and profiles. Self-profiling is also

useful if the actual network traffic is expected to deviate

significantly from the recorded profile.

3 To avoid unnecessary fragmentation when a classless residue is desired

for additional flexibility, R(e) should either be taken away before running

the multi-commodity flow algorithm or taken away as a ‘tax’ from all paths.

S. Suri et al. / Computer Communications 26 (2003) 351–365358

8. Performance results

Without real network topologies and large amounts of

traffic data, it is difficult to perform meaningful and

conclusive experiments. We will follow the tradition set

by other authors, and perform experiments on several

handcrafted topologies, using both worst-case and synthetic

flow data. We present qualitative as well as quantitative

evidence for why we believe our Profile-Based Routing

(PBR) algorithm should (and does) perform better than

others. One highly attractive feature of our algorithm is that

computationally it is online as efficient as the shortest-path

or WSP routing, and substantially faster than MIRA.

In this section, we compare the performance of PBR with

the well-known path computation algorithms Shortest-Path

(SP), Shortest–Widest-Path (SWP), and WSP. In addition,

we also include performance figures of a MIRA based on

flow maximization. This algorithm uses an approximation

for maximizing the weighted sum of flows among ingress–

egress pairs, which is described in more detail in Ref. [18].

We denote this algorithm WSUM-MAX Approximation (or

WSUM-MAX for short), which, similar to MIRA, tries to

approximate the WSUM-MAX problem [14]. This approxi-

mation should meet or exceed a performance comparable to

MIRA, especially as it avoids some of the pitfalls described

earlier for MIRA.4

We used four network topologies to measure the

performance of our PBR algorithm. The first three

topologies are the ones we used in Section 5. The fourth

topology, referred to as KL1, is the one used by Kodialam

and Lakshman [2] in their experiments. It will be used with

different ingress–egress pairs and link weights, as explained

in the simulation section.

In the Parking-Lot Topology (PL), all link capacities are

set to 4800 (to model OC-48). In the Concentrator (CN) and

Distributor (DS) topologies, we used n ¼ 5; and scaled up

all link capacities by 800. Thus, all links with capacity 1 in

Fig. 3(a) and capacity 1 þ [in Fig. 3(b) become links of

capacity 800, while those with capacity n or n þ 1 become

links of capacity 4800. In the KL1 network, all light edges

have capacity 1200, while dark ones have capacity 4800

(meant to model OC-12 and OC-48 links, respectively),

matching the values used in Ref. [14]. Finally, we used a

publicly available implementation of the minimum cost

multi-commodity flow algorithm, the PPRN package, for

our preprocessing phase (available at http://www-eio.upc.

es/~jcastro/pprn.html).

The experiments have been conducted in a route server

environment as described in Ref. [19]. In each experiment,

we generated a random sequence of individual requests, and

measured the performance of the various path computation

algorithms. All of the experiments are conducted using

‘static’ requests, which means that the bandwidth allocated

for a request is never freed again. The results shown are

average values of 20 test runs for each experiment, except

experiment 5, which shows average values of 100 test runs.

8.1. Worst-case analysis

In this first comparison, we revisit the three topologies

(PL, CN, and DS) from Section 5 and infer the worst-case

behavior of shortest-path, WSP, MIRA, and PBR on these

topologies without simulation. Table 1 documents these

results.

In the PL topology, if the first request is between nodes S0

an D0, then all greedy algorithms (shortest path, WSP, SWP,

and MIRA) accept it, which blocks all future requests from

being routed. As the number of ingress–egress pairs n

increases, the percentage of network utilized by the greedy

algorithms goes to zero. In order to avoid such a near-zero

utilization of the network, our new algorithm (PBR) rejects

the first request, and is then able to satisfy all remaining n

requests between Si and Di.

Even if MIRA were extended by a cost threshold (total

weight,W) for admission control, it would not work for this

topology because none of the edges used by the first path from

S0 to D0 are in the minimum cut of any (Si, Di) pair, and

consequently the weights of these edges remain zero.

In the CN topology, a single request of size n by source

S0 will be routed by both shortest path and MIRA along the

path that goes through the concentrator node C, which then

blocks all future requests between Si and D. In this case, the

edge CD is not found to be critical by MIRA because it does

not belong to the minimum cut of any single ingress–egress

pair; it is only in the minimum cut for a cluster of ingress–

egress pairs. Thus, in this case, PBR routes all 2n units of

traffic, while the other three algorithm route only n units.

The same performance is also observed in the DS

topology, except that shortest–widest path routing (SWP)

Table 1

Worst-case performance improvement

Graph name Total requests Requests routed by Factor of improvement

SP WSP SWP MIRA PBR

PL 1 þ n 1 1 1 1 n n

CN 2n n n n n 2n 2

DS 2n n n 2n 2 1 n 2n 2 (except SWP)

4 We had to revert to using this algorithm as an approximation of MIRA,

as the MIRA specification is not sufficiently complete to create an

independent implementation suitable for direct performance comparison.

S. Suri et al. / Computer Communications 26 (2003) 351–365 359

http://www-eio.upc.es/~jcastro/pprn.html
http://www-eio.upc.es/~jcastro/pprn.html

will choose the correct path for the first n 2 1 flows of unit

size from S0 to D.

8.2. Experiment 1: uniform link costs

Experiment 1 has been conducted on KL1 network

shown in Fig. 2. The network has been loaded with 7000

requests, having bandwidth demands uniformly distributed

in the range of 1–3 units (only integer values are used).

Also, the requests have been uniformly distributed among

the ingress-egress pairs. Consequently, WSUM-MAX has

been configured to use equal weights for the ingress–egress

pairs and the traffic profile for PBR has been computed

using the multi-commodity flow algorithm with ‘infinite’

supply for each ingress node. This computation resulted in

flows of 2700 units of bandwidth between each ingress–

egress pair. The link ‘costs’ are set to 1, such that the

shortest-path algorithm is reduced to a minimum-hop

algorithm.

The bandwidth of accepted requests of experiment 1 is

shown in Fig. 5. For each of the algorithms, the bandwidth

increases with the number of requests until a saturation

point is reached at which no more requests can be

accommodated, and the network is saturated. The first

performance measure we use is the bandwidth of success-

fully routed requests after the saturation point has been

reached. The SP shows the weakest performance, with a

saturation point around 10,200 bandwidth units. The best

performance is shown by PBR and WSUM-MAX with

10,800 units, followed very closely by WSP with 10,770

units, and SWP with 10,550 units. Note that because of the

random process that is used to generate the requests, PBR

reaches its saturation point slightly later than WSUM-MAX,

after having routed exactly 2700 units of bandwidth

between each ingress–egress pair. WSUM-MAX, on the

other hand, is more flexible in the sense that it allocates the

bandwidth on a first-come first-serve basis. Similar to

the cases discussed for MIRA, this makes WSUM-MAX

susceptible to creating bottlenecks.

A second performance measure looks at the number of

blocked requests. Fig. 6 shows the number of blocked versus

total requests. While SP starts to block requests after 3500

requests, PBR and WSUM-MAX start to block requests

only after 5125 and 5340 requests, respectively.

In this and all other experiments with small request sizes,

20 test runs were carried out, and the results shown are the

mean values obtained. The experiments have a 99.9%

confidence interval of not exceeding 1% of the mean values.

(For experiment 5, which uses much larger request sizes, the

resulting spread is presented together with the other data.)

8.3. Experiment 2: link costs inversely proportional to link

capacity

In the next experiment, we study the effect of static link

costs on the performance. In network KL1, all links have a

cost of 1. We obtain network KL2 by assigning different

costs to the links. Following a common practice, we assign

link costs inversely proportional to the link capacities. Links

with capacity 1200 are assigned a cost of 4, and links of

capacity 4800 are assigned a cost of 1. This results in

network KL2. The remaining parameters are unchanged.

Please note that path selection done by PBR (as well as

WSUM-MAX and MIRA) is independent of the link costs,

Fig. 5. Throughput of accepted requests using demands of 1–3 in KL1.

Fig. 6. Blocked requests using demands of 1–3 in KL1.

Fig. 7. Throughput of accepted requests using demands of 1–3 in KL2.

S. Suri et al. / Computer Communications 26 (2003) 351–365360

and thus their performance remains unchanged to the

previous experiment.

Fig. 7 shows the bandwidth of accepted requests in

network KL2. Thanks to setting the link costs favorably for

the link-cost-based algorithms (SP, SWP, WSP) and the

generally low interference in this graph, even the less

sophisticated algorithms perform very well. Except for

SWP, all algorithms eventually achieve the theoretical

maximum of 10,800 units. However, SP and also PBR

achieve this maximum slightly later than the other

algorithms. PBR’s slight delay is due to its use of admission

control, which would not really be necessary in this graph

which is well tuned to the offered load, but is very helpful

when the routing behavior should be predictable or is

subject to side constraints such as SLAs.

8.4. Experiment 3: additional ingress–egress pairs

In a third experiment, we increase the number of

ingress–egress pairs and therefore interference. Fig. 8

shows the example network after two additional ingress–

egress pairs have been added to KL2. We refer to this

network as KL2 þ . Note that, unlike the corresponding

MIRA topology from Ref. [14], the link costs are again

inversely proportional to the link capacities, to reflect

common practice and aid the cost-based algorithms (SP,

SWP, WSP).

For the third experiment, 15,000 requests have been

issued for network KL2 þ . As in the previous experiments,

the requests are uniformly distributed among the six

ingress–egress pairs and the bandwidth demand is an

integer value uniformly distributed in the range from 1 to 3.

WSUM-MAX uses equal weights for the ingress–egress

pairs. For PBR, the profile has been computed using the

multi-commodity flow algorithm, resulting in a flow

distribution as shown Table 2.

Fig. 9 shows the bandwidth of accepted requests in

KL2 þ . The largest total throughput is achieved by PBR.

At the same time, PBR starts blocking requests for pairs

S1 ! D1 and S6 ! D6 the earliest. The reason for this

behavior is the fact that requests for all ingress–egress pairs

are uniformly distributed, whereas the calculated maximum

profile differs up to a factor of 4. Nevertheless, PBR

achieves a total throughput of 14,400 units, whereas, WSP,

WSUM-MAX and SP only achieve 13,400, 13,360, and

13,380, respectively.

In order to have PBR achieve a uniform distribution

among the ingress–egress pairs, we compute a PBR profile

by solving the multi-commodity flow problem with a supply

of 2400 units for each of the six pairs. In the resulting

profile, each pair supports 2400 units of bandwidth except

pair S2 ! D2, which is only able to carry 1200 units of

bandwidth. The resulting aggregated throughput is shown in

Fig. 10.

8.5. Experiment 4: weighted request distribution

The fourth experiment has been carried out on network

KL2 þ . Unlike in the previous experiments, the requests

were not uniformly distributed, but followed the distribution

given in Table 3. The relative weights used for WSUM-

MAX, which match the profile shown in Table 2, are shown

in the second row of Table 3. PBR has been used with the

profile given in Table 2.

The results of this experiment are shown in Fig. 11. As

expected, PBR achieves the maximum theoretical through-

put of 14,400 units of bandwidth. WSUM-MAX follows

Fig. 8. Example network KL2 þ with additional ingress–egress pairs.

Table 2

Profile generated for KL2 þ

S1 ! D1 S2 ! D2 S3 ! D3 S4 ! D4 S5 ! D5 S6 ! D6

Flow value 1200 2400 4800 2400 2400 1200

Fig. 9. Throughput of accepted requests using demands of 1–3 in KL2 þ

and a PBR profile that maximizes the total throughput.

S. Suri et al. / Computer Communications 26 (2003) 351–365 361

closely behind with a total throughput of 14,200 units of

bandwidth. WSP and SP both achieve 13,750 units of

bandwidth, whereas SWP only achieves slightly more than

13,500.

8.6. Experiment 5: large demands

The last experiment is a repetition of experiment 4 but

using different demand sizes. The demand sizes have been

scaled by a factor of 100 and thus cover 100–300 units of

bandwidth (again only integer bandwidths are chosen from

the range). The profile used for PBR and the relative weights

used for WSUM-MAX remain unchanged. Fig. 12 shows

the average values of 100 test runs. While the ranking of the

algorithms remains the same, the performance difference

increase. This is due to the fact that an increased request size

also increases a flow’s blocking effect through fragmenta-

tion of the remaining bandwidth.

For experiment 5, 100 test runs have been carried out,

using a random process for selecting the ingress–egress

pairs and the demand sizes. Thus, each test run used its own

pattern of requests and demand sizes. Fig. 13 shows the

variation of the total routed bandwidth and the number of

blocked requests for the different algorithms after 60 and

100 requests have been issued, respectively. After 60

requests, all of the algorithms show the same behavior. At

this point, some of the requests are being blocked, but the

network is already saturated to a large degree. In this

situation, PBR clearly exhibits the smallest variation

regarding the amount of accepted bandwidth. This means

that PBR’s performance is largely independent of the

request pattern used. This is in contrast to the other

algorithms, in which the variation in total routed bandwidth

is more than twice that of PBR. Additionally, the number of

blocked requests is considerably lower in PBR than in any

of the other algorithms.

8.7. Analysis of the simulation results

All algorithms (with the exception of WSP and some-

times SP) generally perform very well when the per-link

costs have been carefully assigned and interference is low.

While careful tuning of link loads is currently the norm

among ISPs, this cumbersome process which has to be

repeated whenever a link fails or is added can be eliminated

by PBR.

For high interference and asymmetric load, PBR is able

to sustain a (potentially much) higher load. We expect these

networks to be the norm, especially for large ISPs. Doing

the access control necessary to achieve such high loads,

PBR may block a few requests violating the profile to ensure

that it can admit more bandwidth from conforming ingress–

egress pairs later.

We do not expect this blocking to have much impact in

real-world networks. First, we expect profiles to be a

meaningful prediction of the short-term future; those

customers with large bandwidth demands will typically

show some long-term stability. Second, the multi-com-

modity flow preprocessing is able to preallocate at least as

much bandwidth as the other algorithms (this is true for

all simulations, except where the multi-commodity flow

algorithm has been forced not to use all bandwidth). The

actual flows to be admitted thus gain significant

headroom.

Fig. 10. Throughput of accepted requests using demands of 1–3 in KL2 þ

and a uniform PBR profile (bandwidth artificially limited to 13,200 units).

Table 3

Distribution of requests for experiment 4

S1 ! D1 S2 ! D2 S3 ! D3 S4 ! D4 S5 ! D5 S6 ! D6

Distribution 1/12 1/6 1/3 1/6 1/6 1/12

Weights 0.5 1 2 1 1 0.5

Fig. 11. Throughput of accepted requests using a weighted distribution of

demands of 1–3 in KL2 þ .

S. Suri et al. / Computer Communications 26 (2003) 351–365362

In case a network operator should have significantly

unsteady load and thus limiting the usefulness of the profile,

it can take proactive measures. For example, by allocating

some percentage of the link capacity to the classless residue

R(e) as described in Section 7.2, an ISP gains some

bandwidth that might be flexibly allocated. Alternatively,

self-profiling as described in Section 7.5 might be applied to

eliminate the need for manual configuration.

8.8. Route computation time

In addition to the theoretical complexity analysis, we

also conducted measurements on our implementations of

the algorithms. In particular, we measured the average

execution time of several thousand path computations on

network KL2 þ . Although KL2 þ is a rather small

network, it is still sufficient to illustrate the differences in

execution time; we expect the differences to increase

substantially with bigger networks. All results reported

below were run on a 1500 MHz Pentium 4. As the routing

simulator [19] was written with readability and extensibility

in mind, an optimized implementation is expected to

significantly improve these results.

As could be expected SP, WSP, and PBR need about the

same time to compute a single path. Average values for

these algorithms are in the range of 110–125 ms, corre-

sponding to 8000–9000 route requests per second. Our

implementation of SWP requires two iterations of Dijkstra’s

algorithm [20], which results in an average execution time

of 150 ms. Even though SWP executes Dijkstra’s algorithm

twice, the second execution is done on a much-reduced

network that often contains just a single path, increasing the

execution time by far less than a factor of two. The WSUM-

MAX approximation computes several max-flows using

Goldberg and Tarjan’s preflow-push algorithm [21]. The

average execution time is 3000 ms, which is more than a

factor of 20 slower than the other algorithms. The initial

computation of PBR’s profile requires 30,000 ms and each

individual path computation requires another 120 ms. Thus,

the initial effort is amortized after about 10 path

computations, after which PBR performs better than the

WSUM-MAX approximation. As MIRA needs to determine

the min-cut after calculating the max-flow, we expect it to

be even slower than WSUM-MAX.

9. Concluding remarks and extensions

We presented a new PBR algorithm for dynamic routing

of bandwidth-guaranteed paths. The online routing phase of

Fig. 12. Throughput of accepted requests using a weighted distribution of

demands of 100–300 in KL2 þ .

Fig. 13. Performance variation (minimum, average, maximum) using a weighted distribution of demands of 100–300 in KL2 þ .

S. Suri et al. / Computer Communications 26 (2003) 351–365 363

the algorithm is as simple and computationally as efficient

as the commonly used minimum-hop routing or the WSP

routing, and it is substantially faster than the recently

proposed minimum interference routing algorithm [2]. Our

algorithm improves network utilization, and accepts more

flows than these other algorithms do, because of its

improved path selection and admission control. The

algorithm takes advantage of quasi-static information

about the network and traffic in an offline-preprocessing

phase, whose output is used to both guide our online path

selection algorithm as well as impose admission control. In

particular, our algorithm is able to spot potential bottleneck

links that may be in the min cut of ‘clusters‘ of ingress–

egress pairs (cf. CN and DS topologies), as opposed to

single pairs identified by MIRA. We were unable to perform

a direct comparison with MIRA itself, as not enough

information was available. We consider WSUM-MAX to be

a good approximation of MIRA, even though it may

sometimes return better results.

The multi-commodity preprocessing framework pro-

posed in our paper is quite powerful and admits

numerous extensions and generalization, which can be

used to implement additional policies and requirements.

Just to illustrate the ideas, we mention three such

extensions.

Minimum Service Level. Suppose a service provider

wants to ensure that a bursty traffic class receives at least

a guaranteed maximum level of service. In other words,

while the expected bandwidth of a traffic class i might be

Bi, the service provider wants to ensure that at least Mi

level of bandwidth is guaranteed during a certain time

period. We can implement this requirement by using a

different cost function in the objective function of our

multi-commodity formulation. The objective function is

augmented by an additive term C which kicks in if more

than Bi 2 Mi units are routed along the excess edge

corresponding to this traffic class.

Imposing Fairness. A flow routing algorithm can

achieve large network utilization, but may unfairly

punish some clients by rejecting a disproportionate

share of their flows. Service providers can implement a

minimum level of fairness by ensuring that a given set of

traffic classes each receives a proportionate share of total

bandwidth. For a traffic class j, we add aBj2Mj to our

objective function, which is exponential in the bandwidth

not routed, for a tunable parameter a. This guarantees

that one class receiving an unfairly low bandwidth

allocation leads to a steep cost, and will be avoided.

Combination with Load Profiling. If load profiles [13] are

available, they can be used to route large requests in order to

minimize call blocking due to insufficient contiguous

bandwidth. We expect it to achieve only minimal improve-

ment under small requests or heavy overload. With large

requests, load profiles should result in significantly

postponing the first block seen on a source-destination pair.

9.1. Future impact

Our framework fits nicely with mechanisms that are

currently being deployed and will be deployed in the future:

Connection-oriented routing, including label-switching

mechanisms such as MPLS, will see a major boost in the

near future, due to the proliferation of VPNs and strict QoS

demands associated with upcoming interactive media

technologies, ranging from voice over IP and video

conferencing to large-scale telepresence and interactive

entertainment.

We further consider PBR to be highly scalable and

adaptive, as the amount of work incurred per flow is linear in

the size of the network, unlike other approaches, which

grow quadratically to cubically with size. Even when

network topologies or demand should change significantly,

PBR adapts very well to new situations.

Optical advances, including fiber to the curb, will help

create even larger networks with more resources. This will

augment label switching with l-switching, and increase the

demand for routing mechanisms that are efficient in terms of

both link bandwidth and route server CPU usage.

Finally, the increasing mobility of networked devices,

personal networks, and other mobile networks (e.g. cars,

trains, boats, or planes), fast handover and thus rerouting of

flows is key. This is greatly simplified by the linear time

behavior of the online portion of PBR.

Acknowledgements

Initial work performed at Washington University in St

Louis, partially supported by NSF grant ANI 9813723. An

earlier version of this paper was presented at QoFIS 2001

[1].

References

[1] S. Suri, M. Waldvogel, P.R. Warkhede, Profile-based routing: a new

framework for MPLS traffic engineering, in: F. Boavida (Ed.), Quality

of Future Internet Services, Lecture Notes in Computer Science, vol.

2156, Springer, Berlin, 2001, pp. 138–157.

[2] M. Kodialam, T.V. Lakshman, Minimum Interference Routing with

Applications to MPLS Traffic Engineering, Proceedings of IEEE

Infocom, Tel-Aviv, Israel, 2000.

[3] E.C. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching

architecture, Internet Engineering Task Force RFC 3031 January

(2001).

[4] B. Gleeson, A. Lin, J. Heinane, G. Armitage, A. Malis, A framework

for IP based virtual private networks, Internet Engineering Task

Force, RFC 2764 (2000).

[5] T.V. Lakshman, D. Stiliadis, High Speed Policy-based Packet

Forwarding Using Efficient Multi-Dimensional Range Matching,

Proceedings of ACM SIGCOMM ’98, 1998, pp. 203–214.

[6] V. Srinivasan, G. Varghese, S. Suri, M. Waldvogel, Fast and Scalable

Layer Four Switching, Proceedings of ACM SIGCOMM ’98, 1998,

pp. 191–202.

[7] V. Srinivasan, S. Suri, G. Varghese, Packet Classification Using Tuple

S. Suri et al. / Computer Communications 26 (2003) 351–365364

Space Search, Proceedings of ACM SIGCOMM ’99, Cambridge, MA,

USA, 1999, pp. 135–146.

[8] R. Braden, D. Clark, S. Shenker, RSVP: a new resource reservation

protocol, IEEE Network 7 (9) (1993) 8–18.

[9] L. Andersson, P. Doolan, N. Feldman, A. Fredette, B. Thomas, LDP

specification, Internet Engineering Task Force, RFC 3036 (2001).

[10] R. Guérin, H. Ahmadi, M. Naghshineh, Equivalent bandwidth and its

application to bandwidth allocation in high-speed networks, IEEE

Journal on Selected Areas in Communications 9 (7) (1991) 968–981.

[11] R. Guérin, A. Orda, D. Williams, QoS Routing Mechanisms and

OSPF Extensions, Proceedings of Second Global Internet Minicon-

ference, 1997.

[12] I. Iliadis, D. Bauer, A New Class of On-Line Minimal Interference

Routing Algorithms, IBM Research Report 3379, IBM Zurich

Research Laboratory, Rüschlikon, October, 2001.

[13] I. Matta, A. Bestavros, M. Krunz, Load profiling based routing for

guaranteed bandwidth flows, European Transactions on Telecommu-

nications 10 (2) (1999).

[14] K. Kar, M. Kodialam, T. Lakshman, Minimum interference routing of

bandwidth guaranteed tunnels with MPLS traffic engineering

applications, IEEE Journal of Selected Areas in Communications 18

(12) (2000) 2566–2579.

[15] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory,

Algorithms, and Applications, Prentice-Hall, Upper Saddle River, NJ,

USA, 1993.

[16] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to

the Theory of NP-Completeness, W.H. Freeman and Company, New

York, 1979.

[17] E.W. Dijkstra, A note on two problems in connection with graphs,

Numerische Mathematik 1 (1959) 269–271.

[18] D. Bauer, A new minimum-interference routing algorithm based on

flow maximization, IEE Electronics Letters 38 (8) (2002) 364–365.

[19] S. Cech, A Route Server for Constraint-Based Routing in MPLS,

Master’s Thesis, Universität Klagenfurt, Austria, January 2002.

[20] Q. Ma, P. Steenkiste, Onpath Selection for Traffic with Bandwidth

Guarantees, Proceedings of IEEE International Conference on

Networking Protocols (ICNP’97), 1997, pp. 191–202.

[21] A.V. Goldberg, R.E. Tarjan, A New Approach to the Maximum Flow

Problem, Proceedings of the Eighteenth Annual ACM Symposium on

Theory of Computing, 1986, pp. 136–146.

S. Suri et al. / Computer Communications 26 (2003) 351–365 365

	Profile-based routing and traffic engineering
	Introduction
	Routing requirements
	Review of existing algorithms
	Problem statement
	Examples illustrating limitations of existing routing algorithms
	Multi-commodity flows
	Profile-based routing
	Multi-commodity flow preprocessing
	Online path selection for LSP requests
	Complexity analysis
	Network dynamics
	Dynamic profiles

	Performance results
	Worst-case analysis
	Experiment 1: uniform link costs
	Experiment 2: link costs inversely proportional to link capacity
	Experiment 3: additional ingress-egress pairs
	Experiment 4: weighted request distribution
	Experiment 5: large demands
	Analysis of the simulation results
	Route computation time

	Concluding remarks and extensions
	Future impact

	Acknowledgements
	References

